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INTRODUCTION 

Surface tension gradients at mobile interfaces produce a variety of fluid motions. An example 
reviewed by Scriven& Sternlins (1960) is the Marangoni effect in which surface tension 
gradients arising from concentration differences drive the flow. Varying surface tension also 
accompanies thermal and electric potential differences at interfaces; resulting flows have been 
analyzed by Levich (1962) and Newman (1973a). 

Another flow caused by an electric potential gradient is currently being used in connection 
with the study of bubble nucleation at an ideal surface. Within electrolytic lieS evolution, a 
phenomenon central to the aluminum and chlorine industries, nucleation of gas bubbles is the 
first step in the bubble-growth process. Complicated by the fact that even polished electrodes 
are microscopically rough and hence provide active bubble-generating sites, the fundamental 
study of nucleation on an ideal surface requires use of a mercury pool as the nepdve electrode. 

A diagram of the experimental apparatus appears in figure 1. When current is passed 
through the cell, hydrogen ions are discharged on the mercury and water is split to make 
oxygen at the anode. The tube in the center of the vessel makes the pool center ohmically 
favorable, hence the current density (c.d.) at the pool's center is higher than at the edge. 
Because of this nonuniform c.d., the double layer potential at the interface increases from more 
neptive to less neptive and hence the surface tension increases radially. The low surface 
tension mercury at the axis flows to relieve the high surface tension at the poripim'y; i m ~  
mercury and the aqueous phase are "pumped" outward by the varying poteutial at the surface 
and return from above and below to maintain steady flow. In contrast to a solid interface where 
the velocity goes to zero, the radial velocity at the mercury interface is a maximum. Thus the 
center portion of the electrode is continuously renewed and makes an ideally clean and smooth 
surface for nucleation studies. The flow complicates the study because dissolved hydrogen gas 
is convected away from the surface; hence the flow velocities must be analyzed. In this paper, 
the flow in such a system under special circumstances is described. 

ANALYSIS 

The Navier-Stokes equation must be solved with the continuity equation in each phase. The 
steady-state cylindrical-coordinate form of these two equations ist 
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Figure I. A schematic of the interlace showing the coordinates. In practice, phase I was aqueous. Phase 2 
was mercury. 
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Assuming that the surface remains flat, that the regions are unbounded, and proceeding 
analogously with the yon Karman (1921) solution for flow at a rotating disk, one seeks solutions 

of the following forms in both phases 1 and 2. 

v, = d ( z )  [5] 

v: = h(z) [61 

P = ~(z). [7] 

After substituting these relations into the preceding equations, one obtains: 

2f + h' = 0 [81 

fz + hf' = vf" [9] 

hh'+ P '= vie". [10] 
P 

The boundary conditions are no flow through the interface, no slip at the interface, 
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vanishing radial velocity far from the interface, and the force balance at the interface. In 
addition, the dynamic pressure must be specified at one point. Mathematically, the first three 
conditions are 

z=O h=O [11] 

z=O f:=f2 [12] 

z=oo,-,~ f3=f2=O [13] 

where "1" denotes aqueous phase and "2" denotes mercury. The fourth boundary condition is 
equivalence between the driving force for motion (the surface tension gradient) and the 
retarding viscous forces in both phases, 

de  
z = 0, 1"z,, - ~',,2 = ~ r  [14] 

where ~- is the shear stress and or the surface tension. 
After inserting expressions [5] and [6] for the velocities, one finds 

I dor 
- /~ l . f ;  +/~zf~ -- r d"~" [15] 

The surface tension must vary with the square of the radius for the equations and boundary 
conditions to be independent of radius. 

(7 = ~ + b [16] 

This is a purely physical requirement for this solution to work. For a given cell geometry, one 
must solve Laplace's equation for the potential with kinetic boundary conditions (Newman 
1973c) and convert the potential variation along the mercury surface to a surface tension 
variation via electrocapillary curves in order to determine the degree to which the actual 
variation of surface tension could be approximated by an equation such as [16]. Substituting 
[16] into [15], one obtains 

- J',f; + ~,zf~ = a. [17] 

The dynamic pressure 9 ) is set to zero at the interface. 
The equations are made dimensionless by introducing the following definitions: 

Equations [8]-[10] become: 

MF vol. 8. No. 5--(3 

P, -- rJoF, .fo = azoJ/~ [18] 

v, = hoH ho = aze2/I • [19] 

z = ZoZ zo = (~2pa)'/3 [201 

P = po~r. [21] 

2F + H' = 0 [22] 

F 2 + HF' = F" [23] 
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HH'  ÷ ~r' = H". 1241 

Boundary conditions [I 1]-[13] and [17] become: 

Z = 0 H = 0 [25] 

Z = 0  F, = (~Pd-)"SF2 [26] 
\g-2P~/ 

Z=-+oo F = 0  [27] 

Z=0  -F ' ,+F~=I .  [28] 

Also, 

Z = O  lr=O. [29] 

One can see from boundary condition [26] that the general functions F, H and ~r in both 
phases are correct for the specified ratio of the fluids' viscosities, but are independent of the 
radial surface tension constants a and b. 

Equations [22]-[24] are coupled nonlinear ordinary differential equations. Equations [22] and 
[23] are solved first; then [24] is integrated to find the pressure. 

Ir = H' - ~ H 2. [30] 

Assuming a value for FI at the interface, which completely specifies the problem in region 1, 
I compute functions F , , / / i  and the derivative FI at the interface. Then F" at the interface is 
computed from [28]; this quantity in turn completely specifies the functions in region 2. Upon 
determining the functions in region 2, I recalculate F, at the interface, compare it with the 
original estimate, and repeat the process until the values no longer change. The equations were 
linearized about a trial solution, put into finite difference form, and solved by Newman's (1975) 
BAND program for solution of simultaneous ordinary differential equations. 

R E S U L T S  AND DISCUSSION 

The functions F, H, and lr for a mercury/water system appear in figures 2 and 3. The radial 
velocities are largest at the interface where the driving force for flow originates. Zero at the 
interface, the axial flows reach a maximum some distance away. I estimated a value of "a",  
corresponsing to a potential varying radially at l volt per centimeter, to be 240dynes/cm3. t 
Resulting velocities were calculated for the system mercury/water at 10°C. 

radial velocity of interface I cm from axis = 48 cm/sec 
maximum velocity in z direction (Hg)= 0.39 cm/sec 
distance from interface of v~ maximum (Hg)= !.3 (10 -2) cm 
Maximum velocity in z direction (H20)= !.2 cm/sec 
distance from interlace of v~ maximum (H20)= 4.5 (10 -~) cm. 

The significant changes in velocity in both phases occur within a millimeter of the surface. 

1"Given a value for the radial variation of aotential, one can deduce the surface tension change accompanying this variation 
from an electrocapillary curve (Newman 1973, p. 153). One volt per centimeter is an atypically high variation of potential over 
the surface of many electrochemical cells, but in this case the experiment is designed to make use of this flow and hence a high 
gradient is used. 
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Fillure 2. The dimensionless z-dependent velocity and pressure functions for phase I .  (p .npn l# ,~)  I r j "  
0.3928. 
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Figure 3. The dimensionless z.dependent velocity u d  pressure functions for phase 2. (/~0p~//~o:) I n :  
0.~)28. 

CONCLUSIONS 

The velocities and pressure in an axisymmetric surface tension-driven flow at the interface 
between two phases have been calculated. Using the yon Karman assumptions about axisym- 
metric flows near an interface, l showed that the interface is uniformly accessible if the surface 
tension increases with the square of the radius. The flows in both phases depend on the ratios 
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of the viscosities and densities of the phases. Significant velocity changes occur in a region next 
to the interface less than 0.I cm thick. 
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